메뉴 여닫기
개인 메뉴 토글
로그인하지 않음
만약 지금 편집한다면 당신의 IP 주소가 공개될 수 있습니다.

성능 문제 식별 방법론과 튜닝 접근법

DB스터디
Oracle (토론 | 기여)님의 2025년 9월 16일 (화) 10:53 판

성능 문제 식별 방법론과 튜닝 접근법

    1. 1. 성능 문제 분석 방법론
      1. 1.1 Top-Down 접근법 (시스템 → 세션 → SQL)
    • 단계별 분석 순서:**

``` 시스템 전체 성능 → 인스턴스 레벨 → 세션 레벨 → SQL 레벨 → 오브젝트 레벨 ```

    • 장점:**

- 전체적인 시스템 상황 파악 가능 - 우선순위가 높은 문제부터 식별 - 리소스 사용률 기반의 객관적 분석

    • 분석 도구:**

- ADDM (Automatic Database Diagnostic Monitor) - AWR (Automatic Workload Repository) - Statspack (AWR 대체)

      1. 1.2 Bottom-Up 접근법 (SQL → 세션 → 시스템)
    • 적용 시나리오:**

- 특정 애플리케이션의 성능 문제 - 특정 SQL 문장의 성능 저하 - 사용자 불만 기반 문제 해결

    • 분석 도구:**

- SQL Trace (10046 Event) - ASH (Active Session History) - SQL Tuning Advisor

    1. 2. 성능 문제 분류 체계
      1. 2.1 문제 유형별 분류
        1. A. 응답 시간 문제 (Response Time Issues)

```sql -- 응답 시간 분석을 위한 기본 쿼리 SELECT

   s.sid, s.serial#, s.username, s.machine, s.program,
   s.status, s.last_call_et,
   w.event, w.state, w.wait_time, w.seconds_in_wait,
   sq.sql_text

FROM v$session s, v$session_wait w, v$sqlarea sq WHERE s.sid = w.sid

 AND s.sql_address = sq.address(+)
 AND s.sql_hash_value = sq.hash_value(+)
 AND s.status = 'ACTIVE'

ORDER BY s.last_call_et DESC; ```

        1. B. 처리량 문제 (Throughput Issues)

```sql -- 시간당 트랜잭션 처리량 분석 SELECT

   TO_CHAR(begin_interval_time, 'YYYY-MM-DD HH24') as hour,
   (SELECT value FROM dba_hist_sysstat dhss2 
    WHERE dhss2.snap_id = dhs.snap_id 
      AND dhss2.stat_name = 'user commits') / 
   (EXTRACT(HOUR FROM (end_interval_time - begin_interval_time)) * 3600 + 
    EXTRACT(MINUTE FROM (end_interval_time - begin_interval_time)) * 60) as tps

FROM dba_hist_snapshot dhs WHERE begin_interval_time >= SYSDATE - 7 ORDER BY begin_interval_time; ```

        1. C. 리소스 고갈 문제 (Resource Exhaustion)

```sql -- 메모리 사용률 분석 SELECT

   component, 
   current_size/1024/1024 as current_mb,
   max_size/1024/1024 as max_mb,
   (current_size/max_size)*100 as usage_pct

FROM v$memory_dynamic_components WHERE max_size > 0 ORDER BY usage_pct DESC; ```

      1. 2.2 문제 심각도 분류
        1. 긴급도 매트릭스

| 심각도 | 영향 범위 | 응답 시간 | 비즈니스 영향 | |--------|-----------|-----------|---------------| | P1 | 전체 시스템 | > 300% 증가 | 서비스 중단 | | P2 | 특정 모듈 | 100-300% 증가 | 기능 제한 | | P3 | 개별 기능 | 50-100% 증가 | 사용자 불편 | | P4 | 미미한 영향 | < 50% 증가 | 성능 개선 여지 |

    1. 3. Wait Event 기반 근본 원인 분석
      1. 3.1 Wait Event 분류 및 진단
        1. A. User I/O 관련 Wait Events

```sql -- I/O 관련 대기 이벤트 상세 분석 SELECT

   event, 
   total_waits, 
   total_timeouts,
   time_waited,
   average_wait,
   time_waited/total_waits*1000 as avg_wait_ms

FROM v$system_event WHERE wait_class = 'User I/O'

 AND total_waits > 0

ORDER BY time_waited DESC;

-- 파일별 I/O 통계 SELECT

   df.tablespace_name,
   df.file_name,
   fs.phyblkrd as blocks_read,
   fs.phyblkwrt as blocks_written,
   fs.readtim as read_time,
   fs.writetim as write_time,
   CASE WHEN fs.phyblkrd > 0 
        THEN fs.readtim/fs.phyblkrd*10 
        ELSE 0 END as avg_read_time_ms

FROM dba_data_files df, v$filestat fs WHERE df.file_id = fs.file# ORDER BY avg_read_time_ms DESC; ```

    • 주요 I/O Wait Events:**

- `db file sequential read`: 인덱스 스캔, ROWID 액세스 - `db file scattered read`: Full Table Scan - `direct path read`: 병렬 처리, LOB 액세스 - `log file sync`: 커밋 대기

        1. B. Concurrency 관련 Wait Events

```sql -- Lock 경합 분석 SELECT

   s1.sid as blocker_sid,
   s1.username as blocker_user,
   s2.sid as waiter_sid,
   s2.username as waiter_user,
   lo.object_id,
   do.object_name,
   lo.locked_mode,
   s2.seconds_in_wait

FROM v$locked_object lo, dba_objects do, v$session s1, v$session s2 WHERE lo.object_id = do.object_id

 AND lo.session_id = s1.sid
 AND s2.blocking_session = s1.sid;

```

    • 주요 Concurrency Wait Events:**

- `enq: TX - row lock contention`: 행 레벨 lock 경합 - `enq: TM - contention`: 테이블 lock 경합 - `latch: cache buffers chains`: Buffer Cache 경합 - `library cache lock`: 공유 SQL 영역 경합

      1. 3.2 Wait Event 패턴 분석
        1. 시간대별 Wait Event 트렌드

```sql -- 시간대별 주요 Wait Event 분석 (AWR 기반) SELECT

   TO_CHAR(s.begin_interval_time, 'YYYY-MM-DD HH24:MI') as snapshot_time,
   e.event_name,
   e.total_waits - LAG(e.total_waits) OVER (
       PARTITION BY e.event_name ORDER BY s.snap_id
   ) as waits_delta,
   ROUND((e.time_waited_micro - LAG(e.time_waited_micro) OVER (
       PARTITION BY e.event_name ORDER BY s.snap_id
   ))/1000000, 2) as time_waited_sec

FROM dba_hist_system_event e, dba_hist_snapshot s WHERE e.snap_id = s.snap_id

 AND s.begin_interval_time >= SYSDATE - 1
 AND e.wait_class != 'Idle'
 AND e.event_name IN (
     'db file sequential read',
     'db file scattered read', 
     'log file sync',
     'enq: TX - row lock contention'
 )

ORDER BY snapshot_time, time_waited_sec DESC; ```

    1. 4. 시스템 리소스 분석
      1. 4.1 CPU 사용률 분석
        1. OS Level CPU 분석

```sql -- CPU 사용률 히스토리 (AWR 기반) SELECT

   TO_CHAR(s.begin_interval_time, 'YYYY-MM-DD HH24:MI') as time,
   os1.value as num_cpus,
   os2.value as load_avg,
   ROUND(os2.value/os1.value * 100, 2) as cpu_util_pct

FROM dba_hist_osstat os1, dba_hist_osstat os2, dba_hist_snapshot s WHERE os1.snap_id = os2.snap_id

 AND os1.snap_id = s.snap_id
 AND os1.stat_name = 'NUM_CPUS'
 AND os2.stat_name = 'LOAD'
 AND s.begin_interval_time >= SYSDATE - 1

ORDER BY time; ```

        1. Oracle Process CPU 사용률

```sql -- 세션별 CPU 사용률 SELECT

   s.sid, s.serial#, s.username, s.machine, s.program,
   ss.value/100 as cpu_used_seconds,
   s.last_call_et as seconds_since_last_call

FROM v$session s, v$sesstat ss, v$statname sn WHERE s.sid = ss.sid

 AND ss.statistic# = sn.statistic#
 AND sn.name = 'CPU used by this session'
 AND ss.value > 0

ORDER BY ss.value DESC; ```

      1. 4.2 메모리 사용률 분석
        1. SGA 구성요소별 분석

```sql -- SGA 구성요소별 사용률 SELECT

   component,
   current_size/1024/1024 as current_mb,
   min_size/1024/1024 as min_mb,
   max_size/1024/1024 as max_mb,
   ROUND((current_size/max_size)*100, 2) as usage_pct,
   resize_ops,
   last_oper_type

FROM v$memory_dynamic_components WHERE current_size > 0 ORDER BY current_mb DESC;

-- Buffer Cache Hit Ratio 상세 분석 SELECT

   name,
   physical_reads,
   db_block_gets,
   consistent_gets,
   ROUND((1 - (physical_reads / (db_block_gets + consistent_gets))) * 100, 2) as hit_ratio

FROM v$buffer_pool_statistics; ```

        1. PGA 메모리 분석

```sql -- 세션별 PGA 사용량 SELECT

   s.sid, s.serial#, s.username, s.program,
   ROUND(p.value/1024/1024, 2) as pga_used_mb,
   ROUND(p2.value/1024/1024, 2) as pga_alloc_mb,
   ROUND(p3.value/1024/1024, 2) as pga_max_mb

FROM v$session s, v$process pr, v$sesstat p, v$sesstat p2, v$sesstat p3,

    v$statname sn, v$statname sn2, v$statname sn3

WHERE s.paddr = pr.addr

 AND s.sid = p.sid AND p.statistic# = sn.statistic#
 AND s.sid = p2.sid AND p2.statistic# = sn2.statistic#
 AND s.sid = p3.sid AND p3.statistic# = sn3.statistic#
 AND sn.name = 'session pga memory'
 AND sn2.name = 'session pga memory max'
 AND sn3.name = 'session uga memory max'
 AND p.value > 1024*1024

ORDER BY pga_used_mb DESC; ```

    1. 5. SQL 레벨 근본 원인 분석
      1. 5.1 Top SQL 식별 및 분석
        1. 리소스 소비량 기준 Top SQL

```sql -- CPU 시간 기준 Top SQL SELECT

   sql_id,
   child_number,
   executions,
   ROUND(cpu_time/1000000, 2) as cpu_time_sec,
   ROUND(elapsed_time/1000000, 2) as elapsed_time_sec,
   ROUND(cpu_time/executions/1000, 2) as avg_cpu_ms,
   disk_reads,
   buffer_gets,
   rows_processed,
   SUBSTR(sql_text, 1, 100) as sql_text_preview

FROM v$sql WHERE executions > 0

 AND cpu_time > 0

ORDER BY cpu_time DESC FETCH FIRST 20 ROWS ONLY;

-- Logical I/O 기준 Top SQL SELECT

   sql_id,
   executions,
   buffer_gets,
   ROUND(buffer_gets/executions, 2) as avg_lio_per_exec,
   disk_reads,
   ROUND(disk_reads/executions, 2) as avg_pio_per_exec,
   rows_processed,
   SUBSTR(sql_text, 1, 100) as sql_text_preview

FROM v$sql WHERE executions > 0 ORDER BY buffer_gets DESC FETCH FIRST 20 ROWS ONLY; ```

      1. 5.2 실행 계획 분석
        1. 비효율적인 실행 계획 패턴 식별

```sql -- Full Table Scan이 발생하는 SQL 식별 SELECT DISTINCT

   p.sql_id,
   COUNT(*) as fts_operations,
   s.executions,
   s.cpu_time/1000000 as cpu_sec,
   SUBSTR(s.sql_text, 1, 100) as sql_preview

FROM v$sql_plan p, v$sql s WHERE p.sql_id = s.sql_id

 AND p.child_number = s.child_number
 AND p.operation = 'TABLE ACCESS'
 AND p.options = 'FULL'
 AND s.executions > 10

GROUP BY p.sql_id, s.executions, s.cpu_time, s.sql_text ORDER BY cpu_sec DESC;

-- 카디널리티 추정 오류 식별 SELECT

   sql_id, child_number, operation, object_name,
   cardinality as estimated_rows,
   last_cr_buffer_gets as actual_buffer_gets,
   CASE WHEN cardinality > 0 
        THEN ROUND(last_cr_buffer_gets/cardinality, 2)
        ELSE 0 END as actual_vs_estimated_ratio

FROM v$sql_plan_statistics_all WHERE last_cr_buffer_gets > 0

 AND cardinality > 0
 AND ABS(LOG(10, last_cr_buffer_gets/cardinality)) > 1

ORDER BY actual_vs_estimated_ratio DESC; ```

    1. 6. 애플리케이션 레벨 분석
      1. 6.1 Connection Pool 분석

```sql -- 세션 상태별 분포 SELECT

   status,
   COUNT(*) as session_count,
   ROUND(COUNT(*) * 100.0 / SUM(COUNT(*)) OVER(), 2) as percentage

FROM v$session WHERE type = 'USER' GROUP BY status ORDER BY session_count DESC;

-- 장시간 비활성 세션 식별 SELECT

   sid, serial#, username, machine, program,
   status, ROUND(last_call_et/3600, 2) as hours_inactive,
   logon_time

FROM v$session WHERE type = 'USER'

 AND status = 'INACTIVE'
 AND last_call_et > 3600

ORDER BY last_call_et DESC; ```

      1. 6.2 트랜잭션 패턴 분석

```sql -- 장기 실행 트랜잭션 식별 SELECT

   s.sid, s.serial#, s.username, s.machine,
   t.start_time,
   ROUND((SYSDATE - t.start_date) * 24 * 60, 2) as duration_minutes,
   t.used_ublk as undo_blocks_used,
   r.name as rollback_segment

FROM v$session s, v$transaction t, v$rollname r WHERE s.taddr = t.addr

 AND t.xidusn = r.usn
 AND (SYSDATE - t.start_date) * 24 * 60 > 30

ORDER BY duration_minutes DESC; ```

    1. 7. 실전 진단 시나리오
      1. 시나리오 1: 갑작스러운 전체 시스템 성능 저하
    • 진단 순서:**

1. **즉시 확인 사항**

  ```sql
  -- 현재 활성 세션 및 대기 이벤트
  SELECT event, count(*) as sessions
  FROM v$session_wait
  WHERE wait_class != 'Idle'
  GROUP BY event
  ORDER BY sessions DESC;
  ```

2. **시스템 리소스 확인**

  ```sql
  -- CPU 및 메모리 사용률 확인
  SELECT metric_name, value, metric_unit
  FROM v$sysmetric
  WHERE metric_name IN (
      'Host CPU Utilization (%)',
      'Current OS Load',
      'Memory Usage (%)'
  );
  ```

3. **AWR 스냅샷 생성 및 분석**

  ```sql
  -- 수동 AWR 스냅샷 생성
  EXEC DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT();
  ```
      1. 시나리오 2: 특정 시간대 성능 저하
    • 원인 분석 절차:**

```sql -- 문제 시간대의 Top Wait Events SELECT

   event_name,
   wait_class,
   total_waits_delta,
   ROUND(time_waited_delta_micro/1000000, 2) as time_waited_sec

FROM (

   SELECT 
       e.event_name,
       e.wait_class,
       e.total_waits - LAG(e.total_waits) OVER (
           PARTITION BY e.event_name ORDER BY e.snap_id
       ) as total_waits_delta,
       e.time_waited_micro - LAG(e.time_waited_micro) OVER (
           PARTITION BY e.event_name ORDER BY e.snap_id  
       ) as time_waited_delta_micro
   FROM dba_hist_system_event e, dba_hist_snapshot s
   WHERE e.snap_id = s.snap_id
     AND s.begin_interval_time BETWEEN 
         TO_DATE('2024-01-15 14:00:00', 'YYYY-MM-DD HH24:MI:SS') AND
         TO_DATE('2024-01-15 16:00:00', 'YYYY-MM-DD HH24:MI:SS')
     AND e.wait_class != 'Idle'

) WHERE total_waits_delta > 0 ORDER BY time_waited_sec DESC; ```

    1. 8. 자동화된 근본 원인 분석 도구
      1. 8.1 ADDM 보고서 자동 생성 스크립트

```sql -- ADDM 보고서 생성 및 분석 DECLARE

   task_name VARCHAR2(30) := 'ADDM_ANALYSIS_' || TO_CHAR(SYSDATE, 'YYYYMMDDHH24MI');
   begin_snap NUMBER;
   end_snap NUMBER;

BEGIN

   SELECT MAX(snap_id) - 1, MAX(snap_id) 
   INTO begin_snap, end_snap
   FROM dba_hist_snapshot;
   
   DBMS_ADDM.ANALYZE_DB(
       task_name => task_name,
       begin_snapshot => begin_snap,
       end_snapshot => end_snap
   );
   
   -- 권고사항 조회
   FOR rec IN (
       SELECT finding_name, impact, message
       FROM dba_addm_findings 
       WHERE task_name = task_name
       ORDER BY impact DESC
   ) LOOP
       DBMS_OUTPUT.PUT_LINE('Finding: ' || rec.finding_name);
       DBMS_OUTPUT.PUT_LINE('Impact: ' || rec.impact);
       DBMS_OUTPUT.PUT_LINE('Message: ' || rec.message);
       DBMS_OUTPUT.PUT_LINE('---');
   END LOOP;

END; / ```

      1. 8.2 Python 기반 성능 모니터링 자동화

```python

  1. Oracle 성능 모니터링 자동화 스크립트 예시

import cx_Oracle import pandas as pd import numpy as np from datetime import datetime, timedelta

class OraclePerformanceMonitor:

   def __init__(self, connection_string):
       self.connection = cx_Oracle.connect(connection_string)
       
   def get_top_wait_events(self, hours_back=1):
       query = """
       SELECT event, total_waits, time_waited, average_wait
       FROM v$system_event 
       WHERE wait_class != 'Idle'
         AND total_waits > 0
       ORDER BY time_waited DESC
       FETCH FIRST 10 ROWS ONLY
       """
       return pd.read_sql(query, self.connection)
   
   def analyze_performance_degradation(self):
       # CPU 사용률 체크
       cpu_query = """
       SELECT value FROM v$sysmetric 
       WHERE metric_name = 'Host CPU Utilization (%)'
         AND intsize_csec = 6000
       """
       cpu_usage = pd.read_sql(cpu_query, self.connection)
       
       # 임계치 초과 시 알림
       if cpu_usage['VALUE'].iloc[0] > 80:
           return "HIGH_CPU_ALERT"
           
       return "NORMAL"

```

이러한 체계적인 접근법을 통해 Oracle Database의 성능 문제를 효과적으로 진단하고 근본 원인을 파악할 수 있습니다. 각 단계별로 구체적인 SQL과 분석 방법을 제시했으니, 실제 운영 환경에서 활용하시기 바랍니다.